cad2009ET汉化.zip
cad2008ET汉化.zip
cad2007ET汉化.zip
彩色扫描 JGJ 18-2012 钢筋焊接及验收规程(附条文说明).pdf
中华人民共和国行业标准
JGJ18-2012
备案号J253-2012
钢筋焊接及验收规程
Specification for welding and acceptance of reinforcing steel bars
2012-03-01发布
2012-08-01实施
中华人民共和国住房和城乡建设部 发布
1总则
1.0.1为在钢筋焊接施工中采用合理的焊接工艺,统一质量验收标准,做到施工安全,确保质量,技术先进,节材节能,制定本规程。
1.0.2本规程适用于一般工业与民用建筑工程混凝土结构中的钢筋焊接施工及质量检验与验收。
1.0.3钢筋的焊接施工及其质量检验与验收,除应按本规程执行外,尚应符合国家现行有关标准的规定。
2术语和符号
2.1术语
2.1.1
热轧光圆钢筋hot rolled plain bars
经热轧成型,横截面通常为圆形,表面光滑的成品钢筋。
2.1.2普通热轧钢筋hot rolled bars
按热轧状态交货的钢筋,其金相组织主要是铁素体加珠光体,不得有影响使用性能的其他组织(如基圆上出现的回火马氏体组织)存在。
2.1.3细晶粒热轧钢筋hot rolled bars of fine grains
在热轧过程中,通过控轧和控冷工艺形成的细晶粒钢筋。其金相组织主要是铁素体加珠光体,不得有影响使用性能的其他组织(如基圆上出现的回火马氏体组织)存在,晶粒度不粗于9级。
2.1.4余热处理钢筋
quenching and self-tempering ribbed steel bars
热轧后利用热处理原理进行表面控制冷却,并利用芯部余热自身完成回火处理所得的成品钢筋。余热处理钢筋有多种牌号,需要焊接时,应选用RRB4OOW可焊接余热处理钢筋。
2.1.5冷轧带肋钢筋cold-rolled ribbed steel wires and bars
热轧圆盘条经冷轧后,在其表面带有沿长度方向均匀分布的三面或二面横肋的钢筋。
2.1.6冷拔低碳钢丝cold-drawn low-carbon steel wire
低碳钢热轧圆盘条或热轧光圆钢筋经一次或多次冷拔制成的光圆钢丝。
2.1.7钢筋电阻点焊resistance spot welding of reinforcing steel bar
将两钢筋(丝)安放成交叉叠接形式,压紧于两电极之间,利用电阻热熔化母材金属,加压形成焊点的一种压焊方法。
2.1.8钢筋闪光对焊flash butt welding of reinforcing steel bar
将两钢筋以对接形式水平安放在对焊机上,利用电阻热使接触点金属熔化,产生强烈闪光和飞溅,迅速施加顶锻力完成的一种压焊方法。
2.1.9箍筋闪光对焊flash butt welding of stirrup
将待焊箍筋两端以对接形式安放在对焊机上,利用电阻热使接触点金属熔化,产生强烈闪光和飞溅,迅速施加顶锻力,焊接形成封闭环式箍筋的一种压焊方法。
2.1.10钢筋焊条电弧焊shielded metal arc welding of reinforcing steel bar
钢筋焊条电弧焊是以焊条作为一极,钢筋为另一极,利用焊接电流通过产生的电弧热进行焊接的一种熔焊方法。
2.1.11钢筋二氧化碳气体保护电弧焊carbon-dioxide arcwelding of reinforcing steel bar
以焊丝作为一极,钢筋为另一极,并以二氧化碳气体作为电弧介质,保护金属熔滴、焊接熔池和焊接区高温金属的一种熔焊方法。二氧化碳气体保护电弧焊简称CO2焊。
2.1.12钢筋电渣压力焊electroslag pressure welding of reinforcing steel bar
将两钢筋安放成竖向对接形式,通过直接引弧法或间接引弧法,用焊接电流通过两钢筋端面间隙,在焊剂层下形成电弧过程和电渣过程,产生电弧热和电阻热,熔化钢筋,加压完成的一种压焊方法。
2.1.13钢筋气压焊 gas pressure welding of reinforcing steel bar
采用氧乙炔火焰或氧液化石油气火焰(或其他火焰),对两钢筋对接处加热,使其达到热塑性状态(固态)或熔化状态(熔态)后,加压完成的一种压焊方法。
2.1.14预埋件钢筋埋弧压力焊submerged-arc pressure welding of reinforcing steel bar at prefabricated components
将钢筋与钢板安放成T形接头形式,利用焊接电流通过,在焊剂层下产生电弧,形成熔池,加压完成的一种压焊方法。
2.1.15预埋件钢筋埋弧螺柱焊submerged-arc stud welding of reinforcing steel bar at prefabricated components
用电弧螺柱焊焊枪夹持钢筋,使钢筋垂直对准钢板,采用螺柱焊电源设备产生强电流、短时间的焊接电弧,在熔剂层保护下使钢筋焊接端面与钢板间产生熔池后,适时将钢筋插入熔池,形成T形接头的焊接方法。
2.1.16待焊箍筋waiting weld stirrup
用调直的钢筋,按箍筋的内净空尺寸和角度弯制成设计规定的形状,等待进行闪光对焊的半成品箍筋。
2.1.17对焊箍筋butt welded stirrup
待焊箍筋经闪光对焊形成的封闭环式箍筋。
2.1.18压入深度pressed depth
在焊接骨架或焊接网的电阻点焊中,两钢筋(丝)相互压入的深度。
2.1.19焊缝余高reinforcement;excess weld metal
焊缝表面两焊趾连线上的那部分金属高度。
2.1.20熔合区bond
焊接接头中,焊缝与热影响区相互过渡的区域
2.1.21热影响区heat-affected zone
焊接或热切割过程中,钢筋母材因受热的影响(但未熔化),使金属组织和力学性能发生变化的区域。
2.1.22延性断裂ductile fracture
形成暗淡且无光泽的纤维状剪切断口的断裂。
2.1.23脆性断裂brittle fracture
由解理断裂或许多晶粒沿晶界断裂而产生有光泽断口的
3材料
3.0.1焊接钢筋的化学成分和力学性能应符合国家现行有关标准的规定。
3.0.2预埋件钢筋焊接接头、熔槽帮条焊接头和坡口焊接头中的钢板和型钢,可采用低碳钢或低合金钢,其力学性能和化学成分应符合现行国家标准《碳素结构钢》GB/T700或《低合金高强度结构钢》GB/T1591中的规定。
3.0.3钢筋焊条电弧焊所采用的焊条,应符合现行国家标准《碳钢焊条》GB/T5117或《低合金钢焊条》GB/T5118的规定。钢筋二氧化碳气体保护电弧焊所采用的焊丝,应符合现行国家标准《气体保护电弧焊用碳钢、低合金钢焊丝》GB/T8110的规定。其焊条型号和焊丝型号应根据设计确定;若设计无规定时,可按表3.0.3选用。
表3.0.3钢筋电弧焊所采用焊条、焊丝推荐表
3.0.4焊接用气体质量应符合下列规定:
1氧气的质量应符合现行国家标准《工业氧》GB/T3863的规定,其纯度应大于或等于99.5%;
2乙炔的质量应符合现行国家标准《溶解乙炔》GB6819的规定,其纯度应大于或等于98.0%;
3液化石油气应符合现行国家标准《液化石油气》GB11174或《油气田液化石油气》GB9052.1的各项规定;
4二氧化碳气体应符合现行化工行业标准《焊接用二氧化碳》HG/T2537中优等品的规定。
3.0.5在电渣压力焊、预埋件钢筋埋弧压力焊和预埋件钢筋埋弧螺柱焊中,可采用熔炼型HJ431焊剂;在埋弧螺柱焊中,亦可采用氟碱型烧结焊剂SJ101。
3.0.6施焊的各种钢筋、钢板均应有质量证明书;焊条、焊丝、氧气、溶解乙炔、液化石油气、二氧化碳气体、焊剂应有产品合格证。
钢筋进场时,应按国家现行相关标准的规定抽取试件并作力学性能和重量偏差检验,检验结果必须符合国家现行有关标准的规定。
检验数量:按进场的批次和产品的抽样检验方案确定。
检验方法:检查产品合格证、出厂检验报告和进场复验报告。
3.0.7各种焊接材料应分类存放、妥善处理;应采取防止锈蚀受潮变质等措施。
4钢筋焊接
4.1基本规定
4.1.1钢筋焊接时,各种焊接方法的适用范围应符合表4.1.1的规定。
长沙地铁1号线综合联调方案.pdf
再谈地铁接地问题.doc
再谈地铁接地问题
黄德胜
(北京城建设计研究总院 100037)
【摘 要】作者提出一个与目前习惯做法不同的接地方案,并说明提出这一方案的理论根据—国家、地方和行业标准;实践根据—现场实验、测试结果。明确提出利用地下结构钢筋作为自然接地体,它的接地电阻在0.5Ω以下,完全符合电气设备的接地要求。地下结构钢筋是一个等电位法拉第笼,是地铁这个电磁环境中一切设备的地。
【关键词】自然接地体 等电位 法拉第笼 接地电流 崩溃电压
1. 概述
关于电气设备的接地, 地面工程有一套完整的规程、规范和规定,本文不做论述。关于地铁接地问题,虽有其特殊性,但更具有普遍性。作者曾发表过两篇文章[1][2] ,对地铁接地电阻的测试方法、接地实验线路、测试数据的来源等做了详细说明,本文亦不再重复。主要是根据相关结论[1] , 直接提出一个新的接地方案, 希望能引起业内专业人士的关注,就算抛砖引玉吧。关于地铁接地问题,并非哪个设计者、哪个设计单位的事情,而是全行业共同存在的问题。这个问题就是:地下结构钢筋能不能作为自然接地装置?作者根据现行技术规范的要求和自身的工程实践,提出了一个新的接地方案,这个方案并不是根据计算,也不是根据理论分析,只是根据工程实践和现场测试,提出来供读者参考和验证。这里所说的验证,只能是实践、现场测试,不是坐而论道式的空谈。“实践是检验真理的唯一标准”,不仅适用于社会科学,自然科学也完全适用。
目前,地铁的地下变电所,无一例外地采用“外引式接地极,绝缘引入,接地装置与结构钢筋绝缘处理。”作者对40年前的北京地铁的第一组接地极就是如此处理的,直到今天,仍是这种做法,无人提出质疑。作者试图自己否定自己,提出一个新的接地方案,供读者参考。
2.确定地铁接地方案构成的理论根据:
(1) 根据《地铁设计规范》GB50157[3]
14.7.5条的规定:“变电所接地宜利用自然接地体作为接地装置”和14.7.13条的规定:“当杂散电流腐蚀防护与接地有矛盾时,应以接地安全为主”的两项规定;
(2) 根据《城市轨道交通设计规范》DGJ08-109-2004[4]
16.2.5条的规定:“变电所的接地装置,应利用自然接地体”的规定;
(3) 根据《交流电气装置的接地》DL/T 621-1997[5]
3.1条的规定:“接地装置应充分利用自然接地极”的规定。
以上三个标准中, 对利用地下结构钢筋做自然接地体, (1)是“宜”(国家标准)、(2)是“应”(地方标准)、(3)是“充分”(行业标准),看来利用地下结构钢筋作自然接地体的理论根据是充分的,应用规范是合适的。根据上述三个规程规定,确定地铁接地方案时,完全可以利用地下结构钢筋作为自然接地体。
3.确定地铁接地方案的实践根据
40年前北京地铁第一组接地极为什么是“外引接地、绝缘引入”而不利用地下结构钢筋做自然接地体,当初也曾经研究、讨论,甚至争论,争论的结果,由两个问题无人能解释清楚:
●利用地下结构钢筋作自然接地体,接地电阻是多少?无人能预知。当初认为地下结构外的防水层,所谓“三毡四油”,对大地是绝缘的,其接地电阻会很大。
●当时地铁交流低压系统是三相四线制接零系统,钢筋兼作地线,有零序电流存在,对测试钢筋中的杂散电流有什么影响,谁也无法说得清。
现在这两个理由都不存在了,地下结构虽然经防水处理,其接地电阻却很小,在0.5Ω以下[1] ,符合电气设备接地的要求;因为地铁交流低压系统采用三相四线制TN-S系统,有专用地线(PE线)和中性线,钢筋中不存在零序电流,故对测试杂散电流没有影响。
(1) 作者曾于1979年在北京地铁一线和环线做过接地实验和现场测试[1] ,得出的结论是:
①变电所内部接地网(设备基础槽钢)与地下结构钢筋并不绝缘,而是电气联接在一起,尽管在设计中要求设备基础槽钢进行绝缘处理,但效果并不明显;
②变电所地下结构钢筋的接地电阻均在0.5Ω以下, 而且很稳定;
③外引接地极的接地电阻均在1Ω以上(当时按小接地电流系统设计,要求接地电阻小于4Ω),对变电所接地电阻的大小已不起作用;
④外引接地极可以取消,利用结构钢筋作自然接地极完全符合规程要求;
⑤ 地下结构钢筋已人为接地,外引接地极不仅无益,反而有害,因为提供了一个地铁杂散电流向外扩散的通路。
推论:
●轨道电位限制器所接的“地”就是地下结构的钢筋;
●走行轨对“地”的电位就是对地下结构钢筋的电位。
(2) 北京地铁对已运行的一线和环线的全部变电所的接地电阻测试结果,接地电阻均在0.5Ω以下[2] ,事隔二十年,由不同的单位、不同的测试人员、用不同的设备,所测结果完全相同,这一数据是可信的。
⑶在现实工程中,外引接地极绝缘引入,变电所接地装置与结构钢筋绝缘处理几乎做不到。这样一个庞大的工程,所有电气设备都有基础槽钢、都需要接地,地线都接至变电所的内部接地网,而这个接地网又处于一个深埋地下的巨大的等电位法拉第笼中,无法保证变电所接地装置与地下钢筋绝缘。
4.接地电流与崩溃电压
⑴ 接地电流
关于接地电流,地下和地面牵引变电所是不同的,地下牵引变电所直流正极接地电流的大小,并不受接地电阻的制约;而地面牵引变电所直流正极接地电流的大小受接地电阻的制约。
①地下牵引变电所直流正极接地时,其接地电流不受接地电阻制约
地下牵引变电所的直流正极直接接地时,其电流的大小和变电所的接地电阻的大小没有关系;和走行轨对“地”(结构钢筋)的过渡电阻也没有关系,近于牵引变电所的正负极出口短路,其接地短路电流很大,足以使变电所的直流馈线开关跳闸。接地短路电流并不是通过接地极流向走行轨(负极),通过外引接地极的电流只占总接地电流的1.3%-3.3%[1],可以忽略不计,而绝大部分接地短路电流是通过结构钢筋直接流向走行轨的。
②地面牵引变电所直流正极接地时其接地电流由接地电阻制约
地面牵引变电所的直流正极直接接地,其接地电流的大小完全由变电所的接地电阻值决定,这一结论在地面的接地规程中不难找到根据。其接地电流回路从变电所接地网通过大地到走行轨,然后流回到变电所的负极。这一电流的大小完全由变电所的接地电阻和走行轨对地的过渡电阻的大小来决定。
⑵崩溃电压
在走行轨对结构钢筋间,存在一个过渡电阻,这个过渡电阻为0.3Ω[1],这个过渡电阻在低电压时是稳定的,但当电压高时,0.3Ω的过渡电阻变成一个非常小的数值,至使接地短路电流很大, 相当于变电所出口短路。当走行轨对结构钢筋间电压为825V时,如果过渡电阻0.3Ω还存在, 那么接地短路电流应为2750A,而实际上, 接地短路电流在10000A以上[1], 足以使直流快速开关大电流整定跳闸。这就说明,在走行轨和结构钢筋之间存在一个崩溃电压,达到这个电压值时,两者之间的过渡电阻0.3Ω就不存在了, 使过渡电阻急剧降低的电压,即是走行轨和“地”(结构钢筋)间的崩溃电压。在崩溃电压下,过渡电阻突然非线性降低,而当崩溃电压消失后,过渡电阻仍然恢复。
5. 地铁综合接地系统的构成
(1)地下变电所接地装置利用结构钢筋作为自然接地体,因地下车站结构钢筋按杂散电流防护的要求,其横向主筋和纵向辅筋进行焊接,形成一个50000m3的等电位法拉第笼,这个等电位法拉第笼深埋于地面10m以下,这就是地铁的地,是地铁这个电磁环境中一切电气设备的地,它的接地电阻小于0.5Ω,无需另设接地装置。
(2)地下车站结构钢筋形成一个等电位体,是所有电气设备的综合接地装置,在变电所设综合接地母排。
(3)地上变电所单独设接地装置,其接地电阻小于0.5Ω,是所有电气设备的综合接地装置,设综合接地母排。
泄压口设计与安装.doc
消防设施检测方法、标准.doc
消防产品强制认证CCCF认证流程.pdf
现场拉拔试验过程.docx
检测前应了解及填写的事项
一、 现场进行植筋拉拔试验,首先应填写工程名称、建设单位、委托单位、代表数量、设计单位、监理单位、检测日期;
二、 应先确定所检测的工程为何种类型的工程;是一般工程还是加固工程;
三、 确定是拉墙筋锚固、构造筋锚固、加固筋锚固、化学锚栓锚固还是膨胀螺丝锚固
四、 再确定是非破坏性检测,还是破坏性检测;
五、 填写所使用的检测仪器是那种型号的检测仪器;
六、 勾选对应的检测规范;
七、 填写钢筋或者锚栓的型号规格、检测部位以及应达到的检测力值;
检测步骤
一, 从仪器箱中取出仪器,接通千斤顶和锚杆拉拔仪;
二, 先打开力值显示仪,清零,并点击峰值按键,关闭油阀,空荷载加压,确定仪器使用正常,然后打开油阀,使千斤顶回复原状;
三, 针对钢筋或者锚栓的规格,选取对应的锚具,(如果是锚栓,应选取对应的锚栓接头旋紧);
四, 把千斤顶套入待检植筋或者锚栓,关闭油阀,用锚具锚紧钢筋,缓缓加压,直至千斤顶与墙面之间没有空隙(手上有轻微的用力感),这时,应停止加压,并点击清零按键进行清零;
五, 均匀加载力值,达到并超过设计力值,停止加压,点击峰值按键,记录加载的力值,等待2分钟,然后再记录此时的力值(在加载过程中,应让人手扶千斤顶,避免因钢筋突起拔出,造成千斤顶的损坏);
六, 然后打开油阀,卸载加载,使千斤顶回复原状;
至此,完成一根钢筋的拉拔试验。
拉拔规范的选用(一般工程):
一、 如果是拉墙筋,不论钢筋的规格,植筋大小,只要不小于6.0KN,就算合格,且拉拔的数量按表9.2.3选用,最小应选取5根钢筋为检测数量。