【英文原版】钢设计师手册(第 6 版)Steel Designers Manual (6th Edition)(按BS 5950、BS 5400)

附件大小:10.3MB
附件格式:1个直链文件,格式为pdf
所属分类:图书手册
分享会员:
分享时间:
最后更新:
资源简介/截图:

6th Edition,BS 5400,BS 5950,Steel Designers Manual,第6版,英文版,钢设计师手册,【英文原版】钢设计师手册(第 6 版)Steel Designers Manual (6th Edition)(按BS 5950、BS 5400)

Contents List 3
Introduction to the sixth edition 11
Introduction to sixth edition 11
Contributors 15
Notation 25
1 Single-storey buildings 31
Chapter 1 Single-storey buildings 31
1.1 Range of building types 31
1.2 Anatomy of structure 32
1.2.1 Cladding 32
1.2.2 Secondary elements 34
1.2.3 Primary frames 35
1.2.4 Resistance to sway forces 37
1.3 Loading 38
1.3.1 External gravity loads 38
1.3.2 Wind loads 39
1.3.3 Internal gravity loads 41
1.3.4 Cranes 41
1.3.5 Notional horizontal forces 42
1.4 Design of common structural forms 43
1.4.1 In-plane stability 43
1.4.2 Beam and column 46
1.4.3 Truss and stanchion 48
1.4.4 Portal frames 54
1.4.5 Tied portal 59
1.4.6 Stressed-skin design 59
1.4.7 Purlins and siderails 61
1.4.8 Cladding 64
References to Chapter 1 70
2 Multi-storey buildings 73
Chapter 2 Multi-storey buildings 73
2.1 Introduction 73
2.1.1 The advantages of steel 73
2.1.2 Design aims 74
2.1.3 Influences on overall design concept 75
2.2 Factors influencing choice of form 77
2.3 Anatomy of structure 89
2.3.1 Columns 89
2.3.2 Beams 90
2.3.3 Floors 97
2.3.4 Bracings 102
2.3.5 Connections 107
References to Chapter 2 107
Worked example 108
3 Industrial steelwork 125
Chapter 3 Industrial steelwork 125
3.1 Range of structures and scale of construction 125
3.1.1 Introduction 125
3.1.2 Power station structures 125
3.1.3 Process plant steelwork 128
3.1.4 Conveyors, handling and stacking plants 130
3.1.5 General design requirements 131
3.2 Anatomy of structure 132
3.2.1 Gravity load paths 132
3.2.2 Sway load paths 134
3.2.3 Floors 136
3.2.4 Main and secondary beams 139
3.2.5 Columns 140
3.2.6 Connections 141
3.2.7 Bracing, stiff walls or cores 143
3.3 Loading 145
3.3.1 General 145
3.3.2 Process plant and equipment 146
3.3.3 Lateral loadings from plant 149
3.3.4 Wind loadings 150
3.3.5 Blast loadings 151
3.3.6 Thermal effects 152
3.4 Structure in its wider context 153
References to Chapter 3 153
4 Bridges 155
Chapter 4 Bridges 155
4.1 Introduction 155
4.2 Selection of span 157
4.3 Selection of type 158
4.3.1 Suspension bridges 159
4.3.2 Cable-stayed bridges 162
4.3.3 Arch bridges 162
4.3.4 Portal frame bridges 164
4.3.5 Truss bridges 165
4.3.6 Girder type 165
4.4 Codes of practice 174
4.5 Traffic loading 175
4.5.1 Highway bridges 175
4.5.2 Railway bridges 175
4.6 Other actions 176
4.7 Steel grades 176
4.8 Overall stability and articulation 177
4.9 Initial design 179
4.9.1 Suspension bridges 179
4.9.2 Cable-stayed bridges 179
4.9.3 Highway bridges – composite deck construction 179
References to Chapter 4 195
Worked example 197
5 Other structural applications of steel 201
Chapter 5 Other structural applications of steel 201
5.1 Towers and masts 201
5.1.1 Introduction 201
5.1.2 Structural types 201
5.1.3 Environmental loading 203
5.1.4 Analysis 206
5.1.5 Serviceability 206
5.1.6 Masts and towers in building structures 207
5.2 Space frames 208
5.2.1 Introduction 208
5.2.2 Structural types 211
5.2.3 Special features 214
5.2.4 Analysis 215
5.3 Cable structures 218
5.3.1 Range of applications 218
5.3.2 Special features 224
5.3.3 Detailing and construction 228
5.4 Steel in residential construction 229
5.4.1 Introduction to light steel construction 229
5.4.2 Methods of construction 231
5.4.3 ‘Stick-build’ construction 232
5.4.4 Panel construction 233
5.4.5 Modular construction 234
5.4.6 Platform and ‘balloon’ construction 236
5.4.7 Material properties 236
5.5 Atria 236
5.5.1 General 236
5.5.2 Structural aspects 238
5.5.3 Fire engineering 246
5.5.4 Environmental engineering 250
References to Chapter 5 251
6 Applied metallurgy of steel 255
Chapter 6 Applied metallurgy of steel 255
6.1 Introduction 255
6.2 Chemical composition 256
6.2.1 General 256
6.2.2 Added elements 257
6.2.3 Non-metallic inclusions 258
6.3 Heat treatment 259
6.3.1 Effect on microstructure and grain size 259
6.3.2 Heat treatment in practice 263
6.4 Manufacture and effect on properties 266
6.4.1 Steelmaking 266
6.4.2 Casting and forging 267
6.4.3 Rolling 268
6.4.4 Defects 269
6.5 Engineering properties and mechanical tests 270
6.6 Fabrication effects and service performance 272
6.6.1 Cutting, drilling, forming and drawing 272
6.6.2 Welding 273
6.7 Summary 278
6.7.1 Criteria influencing choice of steel 278
6.7.2 Steel specifications and choice of grade 279
7 Fracture and fatigue 281
Chapter 7 Fracture and fatigue 281
7.1 Fracture 281
7.1.1 Introduction 281
7.1.2 Ductile and brittle behaviour 281
7.2 Linear elastic fracture mechanics 285
7.3 Elastic–plastic fracture mechanics 288
7.4 Materials testing for fracture properties 290
7.4.1 Charpy test 290
7.4.2 Fracture mechanics testing 291
7.4.3 Other tests 293
7.4.4 Test specimens 293
7.5 Fracture-safe design 293
7.6 Fatigue 294
7.6.1 Introduction 294
7.6.2 Loadings for fatigue 295
7.6.3 The nature of fatigue 295
7.6.4 S–N curves 296
7.6.5 Variable-amplitude loading 299
7.6.6 Strain–life 300
7.6.7 Fracture mechanics analysis 301
7.6.8 Improvement techniques 304
7.6.9 Fatigue-resistant design 305
References to Chapter 7 306
8 Sustainability and steel construction 309
Chapter 8 Sustainability and steel construction 309
8.1 Introduction 309
8.2 Economic impacts 309
8.3 Social impacts 310
8.4 Environmental impacts 310
8.4.1 Effective protection of the environment 310
8.4.2 Prudent use of natural resources 311
8.5 Embodied energy 311
8.5.1 Reduction 312
8.5.2 Re-use 312
8.5.3 Recycling 312
8.5.4 Housing and embodied energy 313
8.5.5 Non-residential buildings and embodied energy 313
8.6 Operational energy 315
8.6.1 Housing and operational energy 315
8.6.2 Commercial buildings and operational energy 316
8.7 Summary 318
References to Chapter 8 318
9 Introduction to manual and computer analysis 321
Chapter 9 Introduction to manual and computer analysis 321
9.1 Introduction 321
9.1.1 Equations of static equilibrium 322
9.1.2 The principle of superposition 322
9.2 Element analysis 322
9.3 Line elements 323
9.3.1 Elastic analysis of line elements under axial loading 324
9.3.2 Elastic analysis of line elements in pure bending 325
9.3.3 Elastic analysis of line elements subject to shear 327
9.3.4 Elements stressed beyond the elastic limit 329
9.3.5 Bending of beams beyond the elastic limit 329
9.3.6 Load factor and theorems of plastic collapse 334
9.3.7 Effect of axial load and shear 334
9.3.8 Plastic analysis of beams subjected to shear 335
9.3.9 Plastic analysis for more than one condition of loading 336
9.4 Plates 337
9.5 Analysis of skeletal structures 338
9.5.1 Stiffness and flexibility 340
9.5.2 Introduction to statically indeterminate skeletal structures 343
9.5.3 The area moment method 345
9.5.4 The slope–deflection method 346
9.5.5 The moment-distribution method 347
9.5.6 Unit load method 348
9.6 Finite element method 351
9.6.1 Finite element procedure 352
9.6.2 Idealization of the structure 353
9.6.3 Procedure for evaluating membrane element stiffness 354
9.6.4 Procedure for evaluating plate bending 357
References to Chapter 9 359
10 Beam analysis 361
Chapter 10 Beam analysis 361
10.1 Simply-supported beams 361
10.2 Propped cantilevers 361
10.2.1 Solution by the Theorem of Three Moments 362
10.2.2 Sinking of supports 363
10.3 Fixed, built-in or encastré beams 363
10.3.1 Beams with supports at the same level 364
10.3.2 Beams with supports at different levels 366
10.4 Continuous beams 368
10.5 Plastic failure of single members 371
10.6 Plastic failure of propped cantilevers 375
11 Plane frame analysis 379
Chapter 11 Plane frame analysis 379
11.1 Formulae for rigid frames 379
11.1.1 General 379
11.1.2 Arrangement of formulae 381
11.1.3 Sign conventions 382
11.1.4 Checking calculations for indeterminate frames 382
11.2 Portal frame analysis 383
11.2.1 Methods of analysis 384
11.2.2 Stability 385
11.2.3 Selecting suitable members for a trial design 386
11.2.4 Worked example of plastic design 388
References to Chapter 11 389
12 Applicable dynamics 391
Chapter 12 Applicable dynamics 391
12.1 Introduction 391
12.2 Fundamentals of dynamic behaviour 392
12.2.1 Dynamic equilibrium 392
12.2.2 Undamped free vibration 393
12.2.3 Damped free vibration 394
12.2.4 Response to harmonic loads 395
12.2.5 Response to an impact 397
12.2.6 Response to base motion 397
12.2.7 Response to general time-varying loads 398
12.3 Distributed parameter systems 398
12.3.1 Dynamic equilibrium 398
12.3.2 Modes of vibration 399
12.3.3 Calculation of responses 401
12.3.4 Approximate methods to determine natural frequency 402
12.4 Damping 404
12.5 Finite element analysis 405
12.5.1 Basis of the method 405
12.5.2 Modelling techniques 407
12.6 Dynamic testing 408
References to Chapter 12 408
13 Local buckling and cross-section classification 411
Chapter 13 Local buckling and cross-section classification 411
13.1 Introduction 411
13.2 Cross-sectional dimensions and moment–rotation behaviour 413
13.3 Effect of moment–rotation behaviour on approach to design and analysis 418
13.4 Classification table 419
13.5 Economic factors 419
References to Chapter 13 420
14 Tension members 421
Chapter 14 Tension members 421
14.1 Introduction 421
14.2 Types of tension member 421
14.3 Design for axial tension 422
14.3.1 BS 5950: Part 1 422
14.3.2 BS 5400: Part 3 425
14.4 Combined bending and tension 426
14.4.1 BS 5950: Part 1 427
14.4.2 BS 5400: Part 3 429
14.5 Eccentricity of end connections 430
14.5.1 BS 5950: Part 1 430
14.5.2 BS 5400: Part 3 430
14.6 Other considerations 431
14.6.1 Serviceability, fatigue and corrosion 431
14.6.2 Stress concentration factors 432
14.6.3 Fabrication and erection 432
14.7 Cables 433
14.7.1 Composition 433
14.7.2 Application 433
14.7.3 Parallel-bar cables 434
14.7.4 Parallel-wire cables 434
14.7.5 Corrosion protection 434
14.7.6 Coating 435
14.7.7 Protection of anchorages 435
14.7.8 Protection against accidents 435
Worked examples 439
15 Columns and struts 441
Chapter 15 Columns and struts 441
15.1 Introduction 441
15.2 Common types of member 441
15.3 Design considerations 442
15.4 Cross-sectional considerations 443
15.4.1 Columns with slender webs 445
15.5 Compressive resistance 448
15.6 Torsional and flexural-torsional buckling 450
15.7 Effective lengths 451
15.8 Special types of strut 459
15.8.1 Design of compound struts 460
15.8.2 Design of angles, channels and tees 462
15.9 Economic points 462
References to Chapter 15 463
Worked examples 463
16 Beams 471
Chapter 16 Beams 471
16.1 Common types of beam 471
16.2 Cross-section classification and moment capacity, Mc 473
16.3 Basic design 476
16.3.1 Moment capacity, Mc 476
16.3.2 Effect of shear 477
16.3.3 Deflection 477
16.3.4 Torsion 479
16.3.5 Local effects on webs 480
16.3.6 Lateral – torsional buckling 482
16.3.7 Fully restrained beams 485
16.4 Lateral bracing 488
16.5 Bracing action in bridges – U-frame design 489
16.6 Design for restricted depth 492
16.7 Cold-formed sections as beams 494
16.8 Beams with web openings 497
References to Chapter 16 500
Worked examples 502
17 Plate girders 511
Chapter 17 Plate girders 511
17.1 Introduction 511
17.2 Advantages and disadvantages 511
17.3 Initial choice of cross-section for plate girders in buildings 512
17.3.1 Span-to-depth ratios 512
17.3.2 Recommended plate thickness and proportions 512
17.3.3 Stiffeners 513
17.4 Design of plate girders used in buildings to BS 5950: Part 1: 2000 514
17.4.1 General 514
17.4.2 Dimensions of webs and flanges 514
17.4.3 Moment resistance 515
17.4.4 Shear resistance 516
17.4.5 Resistance of a web to combined effects 519
17.4.6 End panels and end anchorage 519
17.4.7 Web stiffeners 522
17.4.8 Gantry girders 524
17.5 Initial choice of cross-section for plate girders used in bridges 524
17.5.1 Choice of span 524
17.5.2 Span-to-depth ratios 524
17.5.3 Initial sizing of the flanges 525
17.5.4 Initial sizing of the web 525
17.6 Design of steel bridges to BS 5400: Part 3 526
17.6.1 Global analysis 526
17.6.2 Design of beams at the ultimate limit state 526
17.6.3 Design of beams at the serviceability limit state 535
17.6.4 Fatigue 535
17.6.5 Design format 536
References to Chapter 17 536
Worked examples 538
18 Members with compression and moments 553
Chapter 18 Members with compression and moments 553
18.1 Occurrence of combined loading 553
18.2 Types of response – interaction 555
18.3 Effect of moment gradient loading 560
18.4 Selection of type of cross-section 564
18.5 Basic design procedure 565
18.6 Cross-section classification under compression and bending 567
18.7 Special design methods for members in portal frames 567
18.7.1 Design requirements 567
18.7.2 Column stability 569
18.7.3 Rafter stability 572
18.7.4 Bracing 573
References to Chapter 18 574
Worked examples 575
19 Trusses 583
Chapter 19 Trusses 583
19.1 Common types of trusses 583
19.1.1 Buildings 583
19.1.2 Bridges 585
19.2 Guidance on overall concept 587
19.2.1 Buildings 587
19.2.2 Bridges 588
19.3 Effects of load reversal 589
19.4 Selection of elements and connections 589
19.4.1 Elements 589
19.4.2 Connections 591
19.5 Guidance on methods of analysis 592
19.6 Detailed design considerations for elements 594
19.6.1 Design loads 594
19.6.2 Effective length of compression members 595
19.6.3 Detailed design 596
19.7 Factors dictating the economy of trusses 596
19.8 Other applications of trusses 597
19.9 Rigid-jointed Vierendeel girders 599
19.9.1 Use of Vierendeel girders 599
19.9.2 Analysis 599
19.9.3 Connections 600
Worked examples 602
20 Composite deck slabs 619
Chapter 20 Composite deck slabs 619
20.1 Introduction 619
20.1.1 Form of construction 619
20.2 Deck types 620
20.3 Normal and lightweight concretes 622
20.4 Selection of floor system 622
20.5 Basic design 623
20.5.1 Construction condition 623
20.5.2 Bending resistance of stiffened profiles 624
20.5.3 Composite condition 625
20.5.4 Requirements of BS 5950 628
20.5.5 Design tables 630
20.5.6 Serviceability 630
20.6 Fire resistance 632
20.6.1 Fire tests 632
20.6.2 Fire engineering method 633
20.6.3 Design recommendations 633
20.7 Diaphragm action 633
20.8 Other constructional features 634
References to Chapter 20 635
Worked example 636
21 Composite beams 643
Chapter 21 Composite beams 643
21.1 Applications of composite beams 643
21.2 Economy 643
21.3 Guidance on span-to-depth ratios 645
21.4 Types of shear connection 647
21.5 Span conditions 647
21.6 Analysis of composite section 648
21.6.1 Elastic analysis 648
21.6.2 Plastic analysis 650
21.6.3 Continuous beams 651
21.7 Basic design 654
21.7.1 Effective breadths 654
21.7.2 Modular ratio 655
21.7.3 Shear connection 655
21.7.4 Partial shear connection 660
21.7.5 Influence of deck shape on shear connection 662
21.7.6 Longitudinal shear transfer 664
21.7.7 Interaction of shear and moment in composite beams 665
21.7.8 Deflections 666
21.7.9 Vibration 668
21.7.10 Shrinkage, cracking and temperature 668
References to Chapter 21 669
Worked examples 671
22 Composite columns 693
Chapter 22 Composite columns 693
22.1 Introduction 693
22.1.1 Form of construction 693
22.1.2 Advantages of composite columns 693
22.1.3 Principles of design 694
22.1.4 Cased strut method 696
22.2 Design of encased composite columns 696
22.2.1 Axial load resistance 696
22.2.2 Combined axial load and bending moments 698
22.3 Design of concrete-filled tubes 700
22.3.1 Axial load resistance 700
22.3.2 Combined axial load and bending moment 701
22.3.3 Fire-resistant design 701
References to Chapter 22 702
Worked example 704
23 Bolts 713
Chapter 23 Bolts 713
23.1 Types of bolt 713
23.1.1 Non-preloaded bolts 713
23.1.2 Preloaded high-strength friction-grip bolts 713
23.1.3 Fully threaded bolts 715
23.2 Methods of tightening and their application 715
23.3 Geometric considerations 715
23.3.1 Hole sizes 715
23.3.2 Spacing of fasteners, end and edge distances 716
23.3.3 Back marks and cross centres 718
23.4 Methods of analysis of bolt groups 718
23.4.1 Introduction 718
23.4.2 Bolt groups loaded in shear 718
23.5 Design strengths 722
23.5.1 General 722
23.5.2 Shear 722
23.5.3 Bearing 723
23.5.4 Tension 723
23.5.5 Combined shear and tension 723
23.5.6 Long joints, large grips and packing 724
23.6 Tables of strengths 725
23.6.1 Bolt strengths 725
23.6.2 Bolt capacities 725
References to Chapter 23 726
24 Welds and design for welding 727
Chapter 24 Welds and design for welding 727
24.1 Advantages of welding 727
24.1.1 Aesthetics and freedom of design 727
24.1.2 Stiffness 728
24.1.3 Weight, volume and size 728
24.1.4 Durability and corrosion resistance 728
24.2 Ensuring weld quality and properties by the use of standards 728
24.1.2 Stiffness 728
24.1.3 Weight, volume and size 728
24.1.4 Durability and corrosion resistance 728
24.2 Ensuring weld quality and properties by the use of standards 728
24.2.1 Standards – joint type, weld type, welding symbols, and edge preparation 729
24.2.2 Standards – steel grade, steel selection 730
24.2.3 Substitutions – thickness, yield strength, impact toughness, weldability, quality 731
24.2.4 Standards – welding processes and practices 732
24.2.5 Welding standards – welding consumables 732
24.2.6 Standards – welding procedures 733
24.2.7 Standards – welder approval 733
24.2.8 Standards – inspection and weld quality 734
24.3 Recommendations for cost reduction 734
24.3.1 Overall principles 734
24.3.2 Fillet welds 736
24.3.3 Butt welds 737
24.3.4 Consultation with fabricators 738
24.3.5 Summary of recommendations 738
24.4 Welding processes 739
24.4.1 Introduction 739
24.4.2 Manual metal arc (MMA) welding 739
24.4.3 MIG/MAG welding 740
24.4.4 Cored wire welding 741
24.4.5 Submerged arc welding 742
24.4.6 Welding productivity 743
24.4.7 Weld quality 743
24.4.8 Distortion 744
24.5 Geometric considerations 744
24.5.1 Effective throats 744
24.5.2 Effective lengths 745
24.5.3 Spacing limitations 746
24.6 Methods of analysis of weld groups 746
24.6.1 Introduction 746
24.6.2 Weld groups loaded in shear 746
24.7 Design strengths 748
24.7.1 General 748
24.7.2 Strength 750
References to Chapter 24 751
25 Plate and stiffener elements in connections 753
Chapter 25 Plate and stiffener elements in connections 753
25.1 Dispersion of load through plates and flanges 753
25.2 Stiffeners 755
25.2.1 General 755
25.2.2 Outstand of stiffeners 756
25.2.3 Buckling resistance 756
25.2.4 Local bearing 756
25.2.5 Bracket stiffeners 757
25.3 Prying forces 758
25.4 Plates loaded in-plane 759
25.4.1 Deductions for holes 759
25.4.2 Gusset plates 760
25.4.3 Notched beams 761
References to Chapter 25 762
26 Design of connections 763
Chapter 26 Design of connections 763
26.1 Introduction 763
26.1.1 Design principles 765
26.1.2 Classification of connections 766
26.1.3 Definitions 767
26.2 Simple connections 770
26.2.1 Design philosophy 770
26.2.2 Structural integrity 771
26.2.3 Design procedures 771
26.2.4 Beam-to-column connections 771
26.2.5 Beam-to-beam connections 780
26.2.6 Column splices 789
26.3 Moment connections 795
26.3.1 Introduction 795
26.3.2 Design philosophy 798
26.4 Summary 809
References to Chapter 26 809
Worked examples 811
27 Foundations and holding-down systems 859
Chapter 27 Foundations and holding-down systems 859
27.1 Foundations 859
27.1.1 Types of foundation 859
27.1.2 Design of foundations 861
27.1.3 Sub-soil bearing pressure 863
27.2 Connection of the steelwork 865
27.2.1 Fixed and pinned bases 865
27.2.2 Baseplate design 865
27.3 Analysis 870
27.3.1 Bolt forces 870
27.3.2 Bolt anchorage 873
27.4 Holding-down systems 875
27.4.1 Holding-down bolts 875
27.4.2 Grouting 876
27.4.3 Bedding 876
Worked examples 878
28 Bearings and joints 885
Chapter 28 Bearings and joints 885
28.1 Introduction 885
28.1.1 Movement 885
28.1.2 Design philosophies 886
28.2 Bearings 886
28.2.1 Criteria for design and selection 886
28.2.2 Types of bearing 892
28.2.3 Use of bearings 896
28.2.4 Assemblies of bearings 899
28.3 Joints 903
28.3.1 General 903
28.3.2 Basic criteria 903
28.4 Bearings and joints – other considerations 909
References to Chapter 28 909
29 Steel piles 911
Chapter 29 Steel piles 911
29.1 Bearing piles 911
29.1.1 Uses 911
29.1.2 Types of pile 912
29.1.3 Design 916
29.1.4 Installation 925
29.1.5 Worked examples 929
29.2 Sheet piles 929
29.2.1 Uses 929
29.2.2 Benefits 930
29.2.3 Types of piles 930
29.2.4 Design 931
29.2.5 Worked examples 942
29.3 Pile driving and installation 942
29.3.1 Steel pile installation tolerances 942
29.3.2 Environmental factors: noise and vibration prediction 943
29.4 Durability 945
29.4.1 Corrosion allowances 945
29.4.2 Corrosion and protection of steel piles 945
29.4.3 Corrosion in fill or industrial soils 946
29.4.4 Corrosion and structural forces 946
References to Chapter 29 947
30 Floors and orthotropic decks 951
Chapter 30 Floors and orthotropic decks 951
30.1 Steel plate floors 951
30.1.1 Design of plates simply supported on four edges 951
30.1.2 Design of plates fixed on four edges 954
30.1.3 Design criteria 955
30.2 Open-grid flooring 958
30.3 Orthotropic decks 958
References to Chapter 30 960
31 Tolerances 963
Chapter 31 Tolerances 963
31.1 Introduction 963
31.1.1 Why set tolerances? 963
31.1.4 Types of tolerances 965
31.2 Standards 965
31.2.1 Relevant documents 965
31.2.3 National structural steelwork specification (NSSS) 966
31.2.4 ENV 1090-1 Execution of steel structures 966
31.2.5 ISO 1071-2 Steel structures: Part 2: Fabrication and erection 966
31.2.6 BS 5606 Guide to accuracy in building 966
31.3 Implications of tolerances 967
31.3.1 Member sizes 967
31.3.2 Attachment of non-structural components 968
31.3.3 Building envelope 968
31.3.4 Lift shafts for elevators 969
31.4 Fabrication tolerances 969
31.4.1 Scope of fabrication tolerances 969
31.4.2 Relation to erection tolerances 969
31.4.3 Full contact bearing 970
31.4.4 Other compression joints 974
31.4.5 Lap joints 974
31.4.6 Beam end plates 975
31.4.7 Values for fabrication tolerances 975
31.5 Erection tolerances 975
31.5.1 Importance of erection tolerances 975
31.5.2 Erection – positional tolerance 975
31.5.3 Erection – fixing bolts 983
31.5.4 Erection – internal accuracy 985
31.5.5 Erection – external envelope 985
31.5.6 Shimming full contact bearing splices 986
31.5.7 Values for erection tolerances 992
32 Fabrication 995
Chapter 32 Fabrication 995
32.1 Introduction 995
32.2 Economy of fabrication 995
32.2.1 Fabrication as a cost consideration 996
32.2.2 Design for production 999
32.3 Welding 1002
32.4 Bolting 1002
32.4.1 Shop bolting 1003
32.4.2 Types of bolt 1003
32.4.3 Hole forming 1004
32.5 Cutting 1005
32.5.1 Cutting and shaping techniques 1005
32.5.2 Surface preparation 1008
32.5.3 Cambering, straightening and bending 1009
32.6 Handling and routeing of steel 1010
32.6.1 Lifting equipment in fabrication workshops 1011
32.6.2 Conveyor systems 1013
32.6.3 Handling aids 1013
32.7 Quality management 1014
32.7.1 Traceability 1015
32.7.2 Inspection 1015
32.7.3 Defect feedback 1016
32.7.4 Corrective action 1016
33 Erection 1019
Chapter 33 Erection 1019
33.1 Introduction 1019
33.2 The method statement 1020
33.3 Planning 1021
33.3.1 Design information 1021
33.3.2 Programming 1022
33.3.3 Delivery and off-loading of steelwork 1022
33.3.4 Sub-assemblies on site 1023
33.3.5 Interface management 1024
33.3.6 Surveying and aligning the structure 1024
33.4 Site practices 1025
33.4.1 Erection sequence 1025
33.4.2 Lining, levelling and plumbing 1025
33.4.3 Tolerances 1029
33.4.4 Holding-down bolts 1029
33.4.5 Site bolting 1029
33.5 Site fabrication and modifications 1031
33.6 Steel decking and shear connectors 1033
33.6.1 Introduction 1033
33.6.2 Cold-formed sections 1034
33.7 Quality control 1034
33.7.1 Introduction 1034
33.7.2 Non-conformance procedures 1035
33.8 Cranes and craneage 1036
33.8.1 Introduction 1036
33.8.2 Types of crane 1037
33.8.3 Other solutions 1042
33.8.4 Crane layout 1045
33.8.5 The safe use of cranes 1045
33.8.6 Slinging and lifting 1047
33.9 Safety 1049
33.9.1 The safety of the workforce 1049
33.9.2 Risk assessment 1051
33.9.4 Employees’ first visit to site 1054
33.9.5 The safety of the structure 1054
33.9.6 Temporary supports and temporary conditions 1057
33.10 Special structures 1059
References to Chapter 33 1059
34 Fire protection and fire engineering 1061
Chapter 34 Fire protection and fire engineering 1061
34.1 Introduction 1061
34.2 Standards and building regulations 1061
34.2.1 Building regulations 1061
34.2.2 BS 5950: Part 8 1062
34.3 Structural performance in fire 1064
34.3.1 Strength of steel at elevated temperatures 1064
34.3.2 Performance of beams 1065
34.3.3 Performance of columns 1066
34.3.4 Fire resistance without protection 1066
34.3.5 Performance of composite slabs 1067
34.3.6 Eurocodes 1068
34.4 Developments in fire-safe design 1070
34.5 Methods of protection 1071
34.5.1 Spray-applied protection 1071
34.5.2 Board protection 1072
34.5.3 Intumescent coatings 1072
34.5.4 Pre-delivery protection 1072
34.6 Fire testing 1073
34.7 Fire engineering 1075
References to Chapter 34 1076
35 Corrosion and corrosion prevention 1079
Chapter 35 Corrosion and corrosion prevention 1079
35.1 The corrosion process 1079
35.1.1 Introduction 1079
35.1.2 General corrosion 1079
35.1.3 Other forms of corrosion 1081
35.1.4 Corrosion rates 1081
35.2 Effect of the environment 1082
35.3 Design and corrosion 1083
35.4 Surface preparation 1084
35.5 Metallic coatings 1086
35.5.1 Hot-dip galvanizing 1086
35.5.2 Thermal (metal) spray coatings 1087
35.6 Paint coatings 1088
35.6.1 Composition of paints and film formation 1088
35.6.2 Classification of paints 1089
35.6.3 Painting systems 1089
35.6.4 Main generic types of paint and their properties 1090
35.6.5 Prefabrication primers (also referred to as blast primers, shop-primers, weldable primers, temporary primers, holding primers, etc.) 1090
35.7 Application of paints 1093
35.7.1 Methods of application 1093
35.7.2 Conditions for application 1093
35.8 Weather-resistant steels 1094
35.8.1 Formation of the protective oxide layer 1094
35.8.2 Precautions and limitations 1095
35.8.3 Welding and bolted connections 1095
35.8.4 Painting of weather-resistant steels 1095
35.9 The protective treatment specification 1096
35.9.1 Factors affecting choice 1096
35.9.2 Writing the specification 1097
35.9.3 Inspection 1098
35.9.4 Environmental protection 1098
36 The Eurocodes 1103
Chapter 36 The Eurocodes 1103
36.1 The Eurocodes – background and timescales 1103
36.2 Conformity with EN 1990 – basis of design (EC O) 1104
36.3 EC3 Design of steel structures 1105
36.3.1 Scope 1105
36.3.2 Contents 1105
36.3.3 Design rules 1107
36.3.4 Supporting standards 1110
36.4 EC4 Design of composite steel and concrete structures 1111
36.4.1 Scope and contents 1111
36.4.2 Design rules 1112
36.5 Implications of the Eurocodes for practice in the UK 1117
36.6 Conclusions 1118
Elastic properties of steel 1119
European standards for structural steels 1120
Bending moment, shear and deflection tables 1126
Bending moment and reaction tables for continuous beams 1151
Influence lines for continuous beams 1154
Second moments of area 1165
Geometrical properties of plane sections 1173
Plastic moduli 1176
Formulae for rigid frames 1179
Explanatory notes on section dimensions and properties, bolts and welds 1197
1 General 1197
1.1 Material, section dimensions and tolerances 1197
1.2 Dimensional units 1197
1.3 Property units 1197
1.4 Mass and force units 1198
2 Dimensions of sections 1198
2.1 Masses 1198
2.2 Ratios for local buckling 1198
2.3 Dimensions for detailing 1199
2.3.1 Universal beams, universal columns and bearing piles 1199
2.3.2 Joists 1199
2.3.3 Parallel flange channels 1199
2.3.4 Castellated sections 1200
3 Section properties 1200
3.1 General 1200
3.2 Sections other than hollow sections 1200
3.2.1 Second moment of area (I) 1200
3.2.2 Radius of gyration (r) 1200
3.2.3 Elastic modulus (Z) 1200
3.2.4 Buckling parameter (u) and torsional index (x) 1201
3.2.5 Warping constant (H) and torsion constant (J) 1202
3.2.6 Plastic modulus (S) 1203
3.2.7 Equivalent slenderness coefficient (fa) and monosymmetry index (ya) 1206
3.3 Hollow sections 1207
3.3.1 Common properties 1207
3.3.2 Torsion constant (J) 1207
3.3.3 Torsion modulus constant (C) 1208
3.3.4 Plastic modulus of hollow sections (S) 1208
4 Bolts and welds 1209
4.1 Bolt capacities 1209
4.2 Welds 1211
References to explanatory notes 1212
Universal beams 1215
Universal columns 1221
Joists 1224
Universal bearing piles 1227
Hot-finished hollow sections 1230
Cold-formed hollow sections 1236
Asymmetric beams 1244
Parallel flange channels 1246
Two parallel flange channels 1250
Equal angles 1252
Unequal angles 1253
Equal angles back to back 1255
Unequal angles back to back 1256
Castellated universal beams 1257
Structural tees cut from universal beams 1263
Structural tees cut from universal columns 1267
Extracts from BS 5950: Part 1:2000 1269
Bolt data 1284
Bolt capacities 1290
Bolt and weld groups 1308
Sheet pile sections 1322
Floor plate design tables 1328
Fire information sheets 1330
Section factors 1350
Minimum thickness of spray protection 1355
Basic data on corrosion 1356
British and European standards covering the design and construction of steelwork 1359

资源链接请先登录(扫码可直接登录、免注册)
十年老网站,真实资源、每天更新、会员免费畅享!
高速直链,非网盘分享!浏览器直接下载、拒绝套路!
本站已在工信部及公安备案,真实可信!
手机扫码一键登录、无需填写资料及验证,支持QQ/微信/微博(建议QQ,支持手机快捷登录)
①升级会员方法:一键登录后->用户中心(右上角)->升级会员菜单
②注册登录、单独下载/升级会员、下载失败处理等任何问题,请加客服微信
不会操作?点此查看“会员注册登录方法”

投稿会员:设计院精神小伙儿
我的头像天天加班赶图~~~设计院是弱势群体好不好!请叫我设计狗

您必须才能评论!

手机扫码、免注册、直接登录

 注意:QQ登录支持手机端浏览器一键登录及扫码登录
微信仅支持手机扫码一键登录

账号密码登录(仅适用于原老用户)